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Abstract - -The  pole of a Mohr diagram, for the two-dimensional case, js a unique point on the Mohr circle which 
permits any point on the Mohr circle to be related to the direction in the physical plane associated with that point. 
A Mohr diagram can be constructed for any second rank tensor. To illustrate the simplicity of this geometrical 
construction two examples of the use of the pole are presented,  one for the strain tensor and the other for the 
stress tensor. 

IN TWO recent papers there has been reference to the use 
of the pole on a Mohr diagram (Mandl& Shippam 1981, 
Cutler & Elliott 1983). In one case the construction was 
for stress (Mandl& Shippam 1981) and in the other for 
finite strain (Cutler & Elliott 1983). A third recent paper 
on the Mohr circle construction did not use the pole but 
this could usefully have been included (Means 1982). In 
the first two papers, a brief description is given of the 
properties of the pole. However, the use of the pole is, 
apparently, not commonly known to structural 
geologists except, perhaps, those with a soil mechanics 
background. 

The use of the pole permits values of strain (or stress) 
to be related to their orientations in physical space by a 
simple geometrical technique rather than by more com- 
plicated numerical calculations. It is often surprising 
how such simple techniques have remained in the litera- 
ture for years without their being utilised by certain 
groups of scientists (cf. Treagus 1981). 

I illustrate the use of the pole in a Mohr diagram by 
two simple examples, one for strain and the other for 
stress. 

THE POLE 

For simplicity the description in the following two 
paragraphs is in terms of Cauchy's finite strain tensor but 
the description is valid for any second rank tensor. In 
two dimensions a Mohr circle describes a homogeneous 
state of strain. In the Mohr diagram all directions are 
measured relative to the directions of the principal 
strains. If the orientation in physical space is known for 
a line of specified strain, represented by a point on the 
Mohr circle, the strain point, then the orientations of 
lines with other values of strain, for example the princi- 

pal strains, may be calculated numerically or may simply 
be determined geometrically using the pole. 

The pole is a unique point on the Mohr circle for a 
given state of homogeneous strain and orientation in 
space of the principal strains with respect to a fixed 
reference frame external to the strain markers~ If either 
the state of strain or the orientation in physical space of 
the principal strains changes then the position of the pole 
in the Molar diagram also changes. 

The pole in a Mohr diagram for strain 

Cutler & Elliott (1983) have defined the pole as "the 
point of intersection, on the Mohr circle, of all lines 
which go through strain points and are parallel to the 
material lines which those points represent". The 
relationship between the physical plane and the Mohr 
diagram is shown in Fig. l(a). 

The pole in a Mohr diagram for stress 

It is apparent from the examples given in the literature 
that the pole in a Mohr diagram for stress has been 
defined in two different ways. Ford (Ford & Alexander 
1977) stated that the line from a stress point to the pole 
is parallel to the trace of the physical plane on which the 
stress acts (Fig. lb). Mandl& Shippam (1981) concurred 
with this definition. Cutler & Elliott (1983) briefly 
defined the pole in a Mohr diagram for stress but pre- 
sented no illustration of it. They stated that the line from 
the stress point to the pole is parallel to the normal to the 
plane on which the stress acts (Fig. lc). Goodman (1980) 
presented a construction which uses this latter definition 
of the pole. From Fig. 1 it can be seen that the two 
definitions give poles 180 ° apart. Consistent use of either 
definition in a problem will lead to correct results. 
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Fig. 1. The relationship between the physical plane and the tensor 
plane using the pole. (a) Strain. In the strain plane point A on the Mohr 
circle represents the strain, AA, associated with the line A A '  in the 
physical plane. A chord from A in the Mohr diagram, drawn parallel to 
the line A A '  in the physical plane, intersects the Mohr circle at P, the 
pole. (b) Stress. This construction follows the definition of the pole 
given by Ford & Alexander (1977) and Mandl& Shippam (1981). In 
the stress plane, point A represents the stress, SA, acting on a material 
plane whose trace, in the physical plane, is AA ' .  The normal, tr A , and 
shear, ~'A, stress components are also shown. A chord from A on the 
Mohr circle is drawn parallel to A A '  in the physical plane and intersects 
the circle at P, the pole, (c) Stress. This construction follows the 
definition of the pole given by Goodman (1980) and Cutler & Elliott 
(1983). In the stress plane, point A represents the stress, SA, acting on 
a material plane, A A ' ,  in the physical plane. Normal, tr A, and shear, 
~'A, stress components are also shown. In the stress plane, a chord is 
drawn from A parallel to the normal to the plane A A '  and intersects 

the circle at P, the pole. 

If the Cutler & Elliott (1983) definition is taken then 
there is a degree of correspondence between the cases 
for strain and stress in that the direction of finite lon- 
gitudinal strain in physical space is parallel to the chord 
from the pole to the strain point and the normal compo- 
nent of the stress vector is parallel to the chord from the 
pole to the stress point. In spite of the fact that the 
construction of Mohr (1914) has historical precedence it 
is suggested that the form proposed by Cutler & Elliott 
(1983) be adopted as standard. A suitable definition of 
the pole in a Mohr diagram for stress is, therefore: the 
pole is the unique point of intersection, on the Mohr 
circle, of all chords drawn through stress points and 
parallel to the normals to the physical planes on which 
these stresses act. 

EXAMPLES 

Strain 

This example is based on the problem of determining 
the strains of two bilaterally symmetrical fossils given by 
Ramsay (1967, p. 236). Following Ramsay's method a 
Mohr diagram can be constructed where two such fossils 
have been homogeneously deformed. The physical 
plane with two deformed brachiopods and the resultant 
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Fig. 2. The use of the pole in a strain problem. In the strain plane 
various points are marked on the Mohr circle and correspond to the 
strains, parallel to the directions on the physical plane, with the same 
symbols. In the physical plane two brachiopods, A and B, deformed by 
a homogeneous strain are shown, h refers to the direction of the hinge 
line and m to the direction of the median line; subscripts relate to the 
individual fossils. Having constructed the Mohr diagram following the 
method of Ramsay (1967, p. 236) a chord is drawn from strain point, 
hA (or any other known strain point), parallel to the line, hA, in the 
physical plane to intersect the Mohr circle at P, the pole. The chords 
from the pole, P, to the A i and A2 points on the Mohr circle are shown 
and their orientations have been transferred to the physical plane. For 
clarity chords from the pole to the other marked strain points have 
been omitted but it is clear that they are parallel to the direction in the 

physical plane associated with these strains. 

Mohr diagram are shown in Fig. 2. Considering fossil A, 
the strain point on the Mohr circle corresponding to the 
strain in a direction parallel to the hinge line is h A and 
that of the line of symmetry or median line is m A. A 
chord drawn from hA parallel to the hinge line in the 
physical plane intersects the circle at P, the pole. The 
direction in the physical plane associated with any strain 
point on the Mohr circle may now be easily determined. 
For example, the direction of the maximum extension in 
the plane is obtained by drawing a chord from the pole, 
P, to the strain point, A'~, reciprocal of the maximum 
principal quadratic elongation. This chord is parallel to 
the direction ofh~, maximum principal quadratic elonga- 
tion, on the physical plane. 

Stress 

Figure 3 shows the trace of a fault on a physical plane 
and a corresponding Mohr diagram for stresses in this 
situation. The stress point, A, on the Mohr circle corres- 
ponds to the normal and shear stresses on the fault. 
From A a chord is drawn, parallel to the normal to the 
fault in the physical plane, to intersect the circle at P, the 
pole. To determine, say, the direction of the maximum 
principal compressive stress, a chord is drawn from the 
pole, P, to the stress point, ~q, the maximum principal 
compressive stress. This chord is normal to the trace of 
the plane on which o'~ acts and the direction of o-~ is 
normal to this line (Fig. 3). 

CONCLUSIONS 

The pole is a unique point on a Mohr circle and its use 
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Fig. 3. The use of the pole in a stress problem. In the physical plane a 
fault whose trace is AA ' is acted on by a stress, SA, whose normal, trA, 
and shear,  ~'A. stress components  are shown. In the stress plane this 
stress is represented by point A on the Mohr circle. A chord from A, 
drawn parallel to the normal to the fault A A ' ,  in the physical plane 
intersects the Mohr  circle at P, the pole. To determine,  say, the 
direction of the maximum principal compressive stress, ~r~, a chord is 
drawn from P to crt on the Mohr  circle. In the physical plane the dashed 
line is normal to chord Ptr~, and is the trace of the plane on which tr l 
acts. The tr~ direction is marked. Stress point, B, is associated with the 
conjugate fault to A A '  and the trace of this conjugate fault can easily 

be de termed as being normal to the chord,  B P  

in a Mohr diagram enables points on the Mohr circle, 
representing values of strain or stress, to be related to 
the directions in the physical plane with which these 
values are associated. The technique is a simple geomet- 
rical one and obviates the need for long numerical 
calculations to derive the same information. The exam- 

pies presented here have been deliberately kept simple 
so that the use of the pole can be appreciated easily. 
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